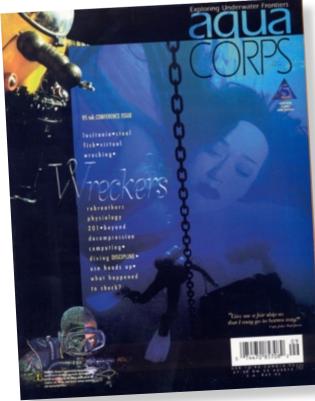


20 years on... AquaCorps ...What has changed?


- Reprinted from AquaCorps, Issue No. 1, February-March 1990 The Independent Journal for Experienced Divers

Call it "High-Tech" Diving

Some of the most experienced leaders in the scuba world are dead set against releasing information—let alone encouragement—on the diving methods under discussion here.

Text by R.W. Bill Hamilton, PhD.

A new category of diving is taking shape in the recreational diving world that sparks controversy and is a cause of great concern. This, in general terms, is diving deeper and staying

down longer than the traditional limits. Although by no means new, for many years it was a cause for concern more than controversy. There was general agreement that it was surely dangerous. was not approved by anyone, and one could say with a clear conscience, "Don't do it". Now methods are comina along that, for the price of extra effort, make it possible to extend both depth and bottom time with what is reaarded by some as an acceptable degree of risk, and in comparison with older methods, some tempting efficiencies.

This article describes the new technology, setting the stage for future articles that explore some of these methods in more detail, but it also contains a serious caveat about all this: It has to be done properly, or it should not be done at all.

Limits of traditional recreational diving

Recreational diving is defined by the so-called training agencies-the organizations of diving instructors (NAUI, PADI, etc.)—as no-stop scuba diving with air to 40 metres, or 30 feet. Many more experienced divers push beyond that envelope, either by doing longer bottom times that require decompression stops or by going deeper. Although there are often some definite objectives for these dives, they are nevertheless being done for fun, so it still comes under the recreational label. It does not, however, fit within the traditional definition. A new term is needed.

The training agencies discourage the use of the term, sport diving, because it implies some sort of competition. A colleague mentioned that he saw two young divers holding onto the bottom with their BCUs inflated, then letting go and racing to the surface. It is appropriate to discourage that sort of competition, just as it is the equally risky practice of seeing who can swim the farthest underwater in breath hold

So, what is AquaCorps?

Text by Rosemary E. Lunn

Corey Mears from Light Monkey mentioned it when I was interviewing him. You never know what connections you are going to make through diving, and the path each individual relationship will follow. Flying into Sydney early Saturday morning, I had no idea that a few hours later I would meet Michael Menduno at OzTek 2011. Some of you will be reading this and wondering—and yes, it was him, the one and only Michael Menduno-the rest of you will have absolutely no idea of who I am talkina about. Let me fill you in...

Jump back to the summer of 1996 and British Cave Diver Mike Thomas presents me with a copy of aquaCORPS magazine, (and I still have this issue in my office today). It was a defining moment in my diving career. Mike had taken me under his wing, showing me there was more than 30 metre, single tank, recreational, air diving. The aquaCORPS issue was N11, October / November 1995 and I vividly remember being thrilled to learn of a brave new world of divina.

The Man

The power behind AquaCorps was Menduno. He conceived and edited "the independent journal for experienced divers", commissioning a crème da la crème stable of knowledgeable diving pioneers to write for him. The resulting prose was greedily consumed by every diver wanting to know more about the evolution of sport divingthe new and exciting movementhigh-tech diving.

AquaCorps was born at a very exciting time, and it certainly greatly influenced the technical diving revolution of the late 80's to early 90's. Wired Magazine described it as "The Sea Geek's Bible", and if you ever wanted confirmation of this, just talk to pretty much any technical diver of note today. They will all agree on one thing-the publication

that greatly influenced their personal diving was AquaCorps. Bumpina

into Menduno at OzTek was the moment I met a personal divina hero. Later,

over a game of pool, I was delighted to discover he was an utterly charming, approachable and generously spirited man. We talked about AquaCorps, writing, rebreathers, diving and magazines. Sometimes all the very best things happen over a beer. "Would it be okay for X-RAY MAG to republish articles from AquaCorps, starting with issue one, Michael?" I asked. "Yes, sure Roz." said Menduno.

High Tech Renaissance

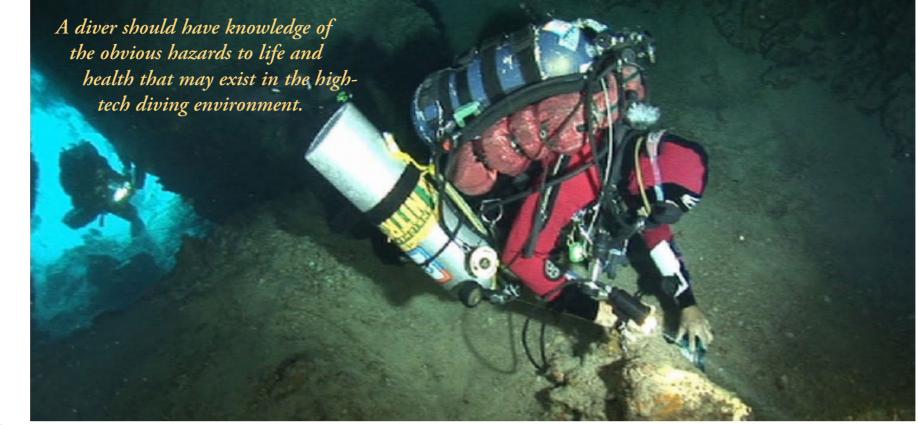
Ironically, we are now enjoying a renaissance in high-tech diving. In the last two years, there's been an explosion in sidemount diving. PADI is now moving into rebreather training, with other agencies wanting to follow the same path, hot on their heels. So, grab a cup of coffee, take your phone off the hook, indulge yourself with a moment of peace and discover what influenced so many of today's lead-

ing technical divers. Some of these articles are just as pertinent today as they were when they were penned, and others are a charming look back at how we were. Either way, enjoy this slice of diving history, with many grateful thanks to Michael Menduno and AquaCorps magazine.

> Michael Menduno of AquaCorps magazine

ech talk

dives. Certainly, advanced divers can practice their sport without dangerous interpersonnal competition, so the term, sport diver, does not meet our needs. Competition is indeed a motivation, not so much for the depth and time records -since nowadays they are limited to those willing to make exceptional efforts—but to be the first in an unexplored cave, or the first to look into a virgin wreck.


take to be prepared for hightech diving? Knowledge, practice, the right kit and good planning.

What does it

Sport does not fit the bill here.

Two other names seem to be suitably descriptive. One is the possibly underused term, advanced recreational diving,

which already has many specific meanings, but is perhaps valuable for its ambiguity. This applies to a diver working outside the no-stop, 40-meter (130-foot) limit, regardless of the technique used. The other, high-tech diving, relates to the new methods but does not include all situations, since the traditional limits can easily be exceeded with standard gear. The task of picking a single all-inclusive term can be left to others; for now, I am calling dives outside the traditional limits advanced, and those done outside those limits using equipment other than standard wetsuits for thermal protection, as high-tech.

Novice divers, it seems from the accident reports do equally risky things, apparently without recognition of the risks involved.

This includes the use of dive computers and new decompression techniques, dry suits, scooters, multiple or over pressurized tanks, as well as special gas mixtures. Use of dry suits and dive computers within the traditional depth and decompression limits can be considered traditional diving, although some special training is needed. While some of these high-tech items are relatively new to recreational diving, many of the terms are old stuff to commercial divers.

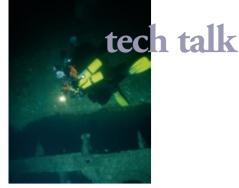
The need for competence Considering the unforgiving nature of mistakes in diving, just talking about advanced and high tech diving has to be done with caution, lest it lead innocent lambs to the slaughter. Therefore, this general topic has to lead off with a note on competence. We cannot proceed without such a caveat.

Somehow it seems unnecessary to warn a novice skier against trying an international headover-heels flip (some of us do them

EDUCATION

Dive Training

"Rich has a relaxed. progressive, effective teaching style which enables him to thoroughly prepare divers for the rigours of 'real life' diving"


Rich Walker High quality training using the best curriculum available

www.wreckandcave.co.uk

occasionally without intending to, but that is another matter). But novice divers, it seems from the accident reports do equally risky things, apparently without recognition of the risks involved. Something that may involved just a little extension beyond standard limits, if it seduces a diver into running out of air at depth,

can be a great deal more risky than trying a flip on skis.

Divers do these things. Therefore, allow me this bit of preaching on competence.

Before doing a new and dangerous thing, one must be highly experienced in it. The way around this double-bind is practice, something one can do at any level of experience.

High-Tech Diving

Many things can be done with acceptable risk, even flips on skis, by someone competent to do them. But in advanced and high-tech diving, there are many things that seem easy and indeed are easy for experts, but which can involve unacceptable risk for ordinary divers. The bottom line is: divers must become competent in new

diving practices before sticking their necks out.

The need for proper knowledge and training is not a new idea. When numerous commercial diving fatalities swept the early days of offshore oil exploration in the North Sea, a

number of regulations were issued that addressed proper equipment and procedures. But they had no great impact on the safety record.

The thing that brought about a sharp reduction in fatalities was an emphasis on competence. Although this is hard to define, it was followed by specific requirements for training, certification, and updating of divers and their supervisors. And it has worked. Many of the early accidents were human error, and while it is difficult to legislate that people must not make mistakes, it is possible to ensure that they at least know— and know well—the right way to do risky things. All this is merely a prelude to a difficult task: to discuss what is happening in

> advanced, high-tech recreational diving without encouraging people to try things they are not prepared for, and thus, to lead them into situations they cannot handle.

So, in very general terms—you heard it here—don't do it if you do not know what you are doing.

Training and then competence

What does it take to be prepared for high-tech diving? Knowledge, practice, the right equipment and aood plannina.

First, a diver should have knowledge of the obvious hazards to life and health that may exist in the high-tech diving environment. In addition to knowing when an oxygen mix can be expected to explode, this includes an understanding of the body's physiological limits, first in the classic black and white limits, but also in the duration of exposure as well as other environmental and physiological factors.

Necessary knowledge includes the procedures and practices to be used—not just what they are but what they mean, the consequences of deviation, and how best to proceed when things are not going to plan. Familiarity with equipment is also criticalhow it works, how to use it, how it should be maintained, and what to do when it malfunctions.

Considering the unforgiving nature of mistakes in diving, just talking about advanced and high-tech diving has to be done with caution, lest it lead innocent lambs to the slaughter.

Next is practice

And I offer this as the proverbial Catch-22: before doing a new and dangerous thing, one must be highly experienced in it. The way around this double-bind is practice, something one can do at any level of experience. An aspiring advanced diver should practice all the various steps that are required, from reading a table to connecting apparatus. Practice things in parts, then link them together. Practice first with everything right, then with some various different. and finally, with some things out of order. And take small steps; perhaps it is best not to try to stage bottles and oxygen in the water the first time you use your

new dry suit.

Consider the pilot of a high performance jet; it may take only a few months of round-the-clock training to learn to fly it, but this practice must go through many stages before real proficiency is achieved. What some worldclass divers do is every bit as challenging as flying Top Gun; divers have a different task, but they will be just as dead if they screw up.

Much of the high tech in high-tech diving has to do with equipment. It need not be the most expensive, but it has to be right for the job. Know that it is right, and know that it is working and in good shape. Pilots may not take their own planes apart, but they do have to know when the aircraft needs fixing. Likewise, whether or not you design, build

Rebreather Forum 3

Powered by: AAUS, DAN and PADI

Are you a rebreather diver, instructor or dive centre ?

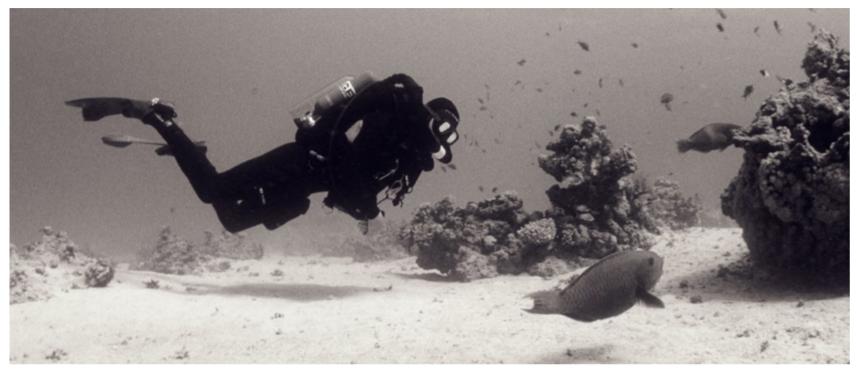
It's time for a Peer Review:

- Rebreather Incidents
- Physiology and Rebreathers
- Rebreather Design, Construction and Testing
- Training and Operations
- Rebreathers in Expeditionary Diving

Come and be part of a major event in Rebreather thinking – Rebreather Forum 3 - the biggest international **Rebreather Conference**

Supported by

Fourth Element IANTD Juergensen Marine rEvo Shearwater Research


Friday 18th -Sunday 20th May 2012

Orlando, Florida, USA

Much of the high tech in high-tech diving has to do with equipment. It need not be the most expensive, but it has to be right for the job.

High-Tech Diving

or maintain your own dive gear, you do need to know how to tell when it is—or it is not—right.

The last item on this list is planning, but it may be first in importance. All modern divers get some training in dive planning, and let us hope that they all use it. Planning a high-tech dive is no different in principle, but it can be a great deal more complex. Not much more needs to be said here, just be sure to make planning a fundamental part of every dive.

Getting the technology

It is one thing to instruct new hightech divers on the importance of learning, it is something else to provide the necessary information.

Likewise, preaching about *the right equipment* does not make it available, nor does it define what is needed. How does one go about getting the information—the knowledge—do to advanced and high-tech diving?

There is no easy way. Some of the most experienced leaders in the scuba world are deadset against releasing information—let alone encouragement—on the diving methods under discussion here. And they are right to be. The word-ofmouth network that gives someone just enough information to get started but not enough to do it right, is extremely dangerous.

Proper textbooks and courses are hard to come by for several reasons. First, most recreational divers shouldn't consider advanced, hightech diving because they cannot or will not—get the necessary knowledge and training to do it safely. Second, those who train divers as a profession don't want to add to their own woes; and the average instructor seldom has the specialized knowledge anyway. Third, the scientific diving community, who, while diving professionally, generally use recreational diving practices; they are not eager to see an excess of recreational diving accidents threaten their programs. A final point is perhaps the most important, things are not well enough developed that a crisp textbook can be written; we basically do not know as much about this as we would like.

Even so, state-of-the-art does exist, and because high-tech diving is here to stay and is going to continue to be used, books and courses will become available in time. Several university diving programs are beginning to move into advanced diving practice, standards are being developed, and the documentation is slowly taking shape.

Organized programs are another approach. At present, virtually all of the high-tech divers are individuals

Three dive computers - Unlimited possibilities

X-RAY MAG: 42:2011 EDITORIAL FEATURES TRAVEL NEWS EQUIPMENT BOOKS SCIENCE & ECOLOGY EDUCATION

PROFILES PORTFOLIO CLASSIFIED

working alone. Each has his or her own equipment and procedures, maintenance, and planning practices; only when diving with partners will he or she follow the same dive profile as someone else. So in organized groups, individual divers can follow the group's practices and can gain experience with risk reduced to the practical limit. This is not widely available yet, but it is coming.

Another tried and true way to learn new tricks is from someone who already knows how. How do you know if a diver already knows how? How do you know

Risk

At some point, it is necessary to discuss risk. Diving is a risky enterprise. Like anything else, the risk involved is directly related to the style of the practice. Some automobile drivers go their entire lives without accidents, others have them all the time. Most of the factors that influence driving risk are well-known, with attitude -the strong desire to drive safely-being the most important item. Diving is the same, and the

safe underwater is to stick to cold showers. But diving can involve an acceptable risk.

Recreational diving, as currently practiced, has less risk than Running out of gas is more serious in diving than in driving, but the point was made. The guy who runs out of gas or suffers frequent fender benders has no business in high-tech diving. recreational guidelines is advanced. This includes air dives in the range of 40 to about 60 meters (130 to 200 feet)—more or less within Navy and commercial limits, and those to greater depths, in some cases exceeding 90 meters (300 feet)—which almost invariably carry too high a risk

when

your expert is telling you the right things? Obviously you check his track record, find out how he got his training, and how he is regarded by the community.

Our contribution is to offer more specific details in future articles, including a review of the activities being carried out by high-tech diving programs.

X-RAY MAG : 42 : 2011

consequences of an accident—a loss of control are just as serious as in driving.

In a recent talk on fitness to divers, Dr Fred Bove said, "The first guy to be eliminated should be the one who runs out of gas on the freeway." There is no such thing as perfectly safe diving, any more than there is a decompression table with a true zero-bends incidence. The only way to be perfectly

many other activities, both sport and occupational, and the risk is acceptable to most. Advanced high-tech diving will involve a higher risk than routine diving, but the risk can be kept within acceptable limits by having the right attitude and by following guidelines like those given above. If you do not intend to do it in a safe way, then for goodness sake, don't do it at all.

Experience deserves a special emphasis here. Whether they be metallurgy or medicine, practices that work on numerous occasions are generally regarded as *acceptable*. This is certainly the way decompression tables become validated, and other diving practices might follow the same path. Although this is a complex issue, since real depth of experience is generally lacking, the principle holds.

Current high-tech diving practices

For those who have paid their dues and bravely read the sermon, it is now time for a brief discussion of what this is all about. As explained, any proper diving outside the

EDITORIAL FEATURES TRAVEL NEWS EQUIPMENT BOOKS SCIENCE & ECOLOGY EDUCATION

High-Tech Diving

to condone. Deep air dives deserve further discussion, first to elaborate on the risks, but also to relate what has been done.

The next methods are in a category best called, *specialmix diving*—that is, dives done with gas mixtures other than air. Of these, the most common are two types of *nitrox* diving. Nitrox, a mixture of oxygen and nitrogen with a composition different from air, is for use in undersea

habitats and has less oxygen than air. This method offers certain specific advantages, the main one being access to the depth range of from 10 to 60 meters with very long bottom times, and little or no decompression following excursions (depending on the depth of the habitat).

The term, nitrox, is also used for a mixture of air and oxygen more properly called, enriched air nitrox. This method, or EANx, is useful in the range from 10 to about 35 or 40 meters, and allows greatly increased bottom times with no increase in decompression time. It is being used by some university diving programs, is described by the NOAA diving manual, and is beginning to be embraced by recreational divers.

There are two main hazards to EANx, both related to its oxygen content. Since excess oxygen is being breathed, the possibility for toxicity must be accounted for,

> and handling mixtures rich in oxygen is a fire and/or

explosion hazard. Decompression tables for EANx diving can be derived from existing air tables by the equivalent air depth calculation, but some advantage can come from custom table computation.

Perhaps the most exciting of the special mix methods are *trimix* and heliox diving. Trimix involves the use of mixtures of helium, nitrogen and oxygen that are appropriate for diving in the range of 50 to 100 meters. At the deeper end of this range, a mixture of helium and oxygen, with little or no nitrogen, is better. Trimix or heliox diving takes considerable operational planning and preparation because of gas logistics, problems and, in most cases, special decompression tables are needed. Logistics applied first at the level of mixing—which takes both skill and equipment-and later, at the level of breathing, since all the gas needed for a deep Trimix or heliox dive cannot normally be carried by the diver.

Still another special mix method involves the use of rebreathers. These supply gas to the diver in a closed or semi-closed loop from which CO₂ is absorbed. They are not readily available to recreational divers, but some scientific diving programmes are beginning to use them, and they have been used for years by many navies. In addition to long in-water times, rebreathers offer the possibility of optimal oxygen level to gain decompression advantages. The need for

redundancy in the event of system failure is a problem in some applications.

As mentioned, other high-tech items are having an impact on diving. Dive computers make variable depth diving (multilevel) and repetitive diving more accessible, albeit with meaninaful risk of decompression sickness unless certain precautions are taken. Dry suits are making all types of diving more comfortable. and with proper training this is probably with less overall risk. Dry suits are essential for the long dives possible with special mixtures.

With all of these warnings issued, and all of the described parameters met, advanced hightech diving offers the prepared, knowledgeable diver a change to experience a realm not previously accessible to humans. And there is every reason to think—as our technology and knowledge advance-that we will be able to push the envelope even further.

Bill Hamilton, a physiologist with 25 years of specialization in the diving aerospace and environmental fields, has spent much of his professional effort bridging the gap between the laboratory and the field. A resident of Tarrytown, New York, USA, he is the principal in his consulting firm, Hamilton Research, Ltd., where his work includes the development and assessment of commercial, institutional, and government decompression procedures.

www.waterproof.eu

FREQUENTLY IMITATED NEVER COPIED

THE W1 WETSUIT When extreme performance is your only option.

